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Detailing is a linguistic tool for mathematical argumentation in which given mathematical 
information is operationalized through one’s warrants to support a claim. Recent literature suggests 
that students’ detailing is related to their early algebraization.  This study examined 168 elementary 
students’ use of detailing in two mathematical argumentative tasks in relation to their enacted 
scheme of multiplicative unit coordination. A convergent mixed methods approach was used to 
analyze students’ argumentative writing qualitatively, and merge these findings with quantitative 
indicators for students’ multiplicative reasoning. Results suggest a statistically significant 
relationship between students’ detailing and their multiplicative unit coordination.  
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The development of mathematical argument in the elementary grades is relatively 
undertheorized. Although various descriptions and models of how children come to engage in more 
sophisticated mathematical argumentation and/or proof have been proposed (Blanton & Kaput, 2011; 
Krummheuer, 2007; Morris, 2009; Tall et al., 2011), the vast majority of such descriptions focus only 
on generalized arguments. This bias towards generalization is understandable, given the necessity of 
generalization in the desired development of proof processes. However, it has neglected aspects of 
children’s mathematical argumentation that may precede inference and generalization. Following 
Peirce, Kosko (2016) defined the purpose of mathematical argument as establishing an acceptable 
mathematical claim of truth. According to Peirce (1903/1998), argument necessarily involves 
inference for generalization. Yet, the first step of argumentation, colligation, precedes inference. 
Colligation occurs when an individual conveys the collective warrants for their argument as a 
singular copulative proposition. The copulative proposition can then be used to support a generalized 
claim. For example, in proving the sum of two consecutive odd integers is divisible by two, an 
individual may use the equation = + = + 2 = 2= + 2 = 2 = + 1  as part of their proof. The 
equation includes several propositions that, collectively, support the claim to be proven. Colligation 
in mathematical argument is facilitated by various linguistic tools (Kosko & Singh, 2016a). 
However, this particular study focuses specifically on the linguistic tool of detailing, in which the 
given information from a task is operationalized via a reference chain as a means of providing 
cohesion for a copulative proposition (Kosko, 2016; Kosko & Singh, 2016a).  

Recent study of children’s detailing in mathematical argument has identified a potential 
relationship with abstraction of number (Kosko, 2016; Kosko & Singh, 2016a; Kosko & Singh, 
2016b). Specifically, children’s abstraction in unit coordination of number has been found to relate to 
their abstraction of linguistic information units in argumentation. In the present study, we seek to 
investigate this phenomenon further by studying children’s engagement in detailing in relation to 
their demonstrated unit coordination in multiplicative contexts. Therefore, the purpose of this study is 
to examine children’s detailing enacted in MAW across several tasks in relation to their enacted 
multiplicative coordination of units. 

Theoretical Framework 

Detailing as Colligation in Children’s Mathematical Argumentative Writing 
The present study takes a Peircian semiotic view of mathematical argument as a theoretical lens, 

while applying Systemic Functional Linguistics (SFL) as an analytic lens. Peirce (1903/1998) 
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defined argument as a sign that synthesizes various propositions to establish a generalizable claim. 
Further, arguments synthesize other abstracted signs including, but not limited to, copulative signs. 
Copulative signs are the synthesized set of propositions used to foreground the inference towards a 
generalizable claim. As such, copulative signs are part of arguments, but do not include logical 
inference or a generalizable claim. The formation of a copulative sign involves the action of 
colligation, or the collective expression of propositions into a singular copulative proposition. 
Colligation is facilitated by various linguistic tools. Kosko and colleagues (Kosko, 2016; Kosko & 
Singh, 2016a; Kosko & Singh, 2016b; Kosko & Zimmerman, 2015) have identified at least two such 
linguistic tools: nominalization and detailing. Nominalization occurs when two or more mathematical 
linguistic objects are metaphorically conveyed as one (Halliday & Matthiessen, 2004). For example, 
4n+2 is considered as a singular expression, but includes the discrete nominal objects 4n and 2 as 
being summed. Further, 4n could be considered as the product of two discrete nominal objects (4 and 
n). Thus, nominalization facilitates colligation as a tool for abstraction of multiple nominal objects. 
Although nominalization is useful, and often essential, for colligation, the present study limits its 
focus to the linguistic tool of detailing. 

Kosko (2016) describes detailing as the operationalization of given information through the 
construction of a reference chain through the warranted propositions supporting a claim. According 
to Halliday and Matthiessen’s (2004) approach to SFL, reference serves the role of establishing 
cohesion for a text. In this manner, reference chains can be used to establish new information and re-
establish given information for conveying and establishing information units. Information units are 
grammatical units that establish new information based on given information. Detailing goes beyond 
more common applications of reference chains in that given information is continuously 
operationalized and built up over multiple warranted propositions (i.e., information units). The 
following third grade student’s mathematical argumentative writing provides an example of detailing 
The child was asked to respond to the Cuisenaire-rods based task If a red rod is 5, a yellow rod can’t 
be 9 because… Elements of the detailed reference chain are in bold, with grammatical clauses 
separated by “//”: 

The yellow rod can’t be 9 // because 1 red one is 5 // and that does not take it all up // so you put 
another 5 // and it’s still not big enough // but it [is] basically 10 // and it’s smaller than the 
yellow // so the yellow can’t be 9. 

The child’s writing begins and ends with their non-generalized claim that a yellow can’t be 9 
long. The clauses between serve the role of the copulative proposition, which is cohesively bound by 
a detailed reference chain. The given, 1 red one is 5, is operationalized in the information unit it [is] 
basically 10. The operationalized referent, 10, is exophoric in that it presents new information not in 
the information unit. Although technically new information, 10 is established in the information unit 
from the given information in a manner that represents a transformed, or operationalized, version of 
the given referent. Thus, 10 is part of a detailed reference chain that is used to establish the claim of 
yellow not being 9 long. Halliday and Matthiessen’s (2004) definition identifies both referents as 
different information units, but detailing allows for the formation of a unique type of reference chain 
that establishes a copulative proposition. Specifically, it [is] basically 10 serves as a link in the 
detailed reference chain connected to the given 1 red one is 5 as well as the referent in the 
proposition “it’s smaller than the yellow.” Although each proposition provides a different exchange 
of given and new information, each new information referent is a transformed version of the given 
information allowing for cohesion. Thus, detailing allows for all three propositions to collectively 
serve as a copulative proposition to support the child’s claim. 

As can be gathered from the preceding description, detailing allows for the linguistic 
coordination and cohesion of different information units into a singular copulative proposition. The 
primary aim of the present study is to investigate whether children’s choice of detailing (i.e., 
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linguistic unit coordination) coincides with their demonstrated ability to coordinate mathematical 
units (i.e., number). Thus, we briefly discuss multiplicative unit coordination to foreground a 
description of a conjectured relationship between these two concepts. 

Children’s Multiplicative Unit Coordination  
This study considers multiplicative reasoning from the perspective of scheme theory, with 

specific focus on Hackenberg’s (2010) multiplicative concepts. According to Steffe (1994) 
multiplicative schemes require the coordination of at least two levels of units, and to develop 
multiplicative concepts students require the anticipatory use of such schemes. Specifically, students 
may construct schemes, or collections of actions, in activity (as they are engaged in a task), or they 
may use them in anticipation of the actions they expect to engage with the task (i.e., anticipatory 
schemes). Hackenberg (2010) suggests three stages of students’ multiplicative concepts with the 
subsequent concept requiring more the use of anticipatory schemes where in activity schemes may 
have been used previously. The transition from less to more sophisticated multiplicative concepts is 
gradual, and intermediate levels are developed successively through internalizing in-activity schemes 
such that they begin to be used as anticipatory schemes (Norton et al., 2015).  

Anticipatory and in-activity schemes described above are based on qualitative assessments and 
assume that a student transitions gradually from enacting schemes in activity, to using schemes in an 
anticipatory manner. However, examination of whether students enact multiplicative schemes either 
in activity or in an anticipatory manner incorporates a depth of analysis that requires more time than 
can be devoted when considering larger sample sizes. Such is the case in the present study (n = 168).  
Therefore, we adopt the approach of Kosko and Singh (in review), in which evidence of schemes 
enacted by students is identified from written work. Such evidence is, by its nature, an artifact of the 
activity generally observed by qualitative teaching experiments. Therefore, enacted schemes, as 
defined in the present study, do not distinguish between in-activity and anticipatory schemes. 
However, enacted schemes are further assessed with enacted reversible schemes to attempt a closer 
representation of anticipatory schemes than in-activity. Although enacted schemes do not allow for 
the critical distinction between in-activity and anticipatory schemes, their use does allow for larger 
scale data collection (Kosko & Singh, in review).  

Following Hackenberg’s (2010) three multiplicative concepts, but with the caveat of using 
enacted schemes in place of in-activity and anticipatory, the present study considers students’ 
multiplicative reasoning via four tiers. The tiers align with Hackenberg’s (2010) multiplicative 
concepts. Multiplicative Tier 0 (MT-0) involves pre-multiplicative schemes (i.e., counting by 1s with 
records of counting). The other three tiers (MT-1, MT-2, and MT-3) are similar to Hackenberg’s 
three stages respectively with the primary difference that the basis of classification in our case is the 
enacted rather than the anticipatory scheme. In other words a student belonging to MT-1 can be 
considered to fall in Hackenberg’s first multiplicative concept. Thus the first multiplicative tier (MT-
1) involves the enacted coordination of two levels of units, and MT-2 involves the enacted 
coordination of three levels of units. MT-3 involves the enacted coordination of three levels of units, 
as does MT-2, but shows clear evidence of disembedding with non-1 units, and is considered more 
likely to correspond to Hackenberg’s (2010) definition of the third multiplicative concept. 
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Table 1: Students’ Unit Coordination and Enacted Schemes 
T

ie
rs

 

Students’ ways of 
Unit coordination Enacted schemes Examples 

M
T-

0 No unitization or 
unit coordination 

Iterating 1 units n 
times 
  

M
T-

1 

Students’ may 
coordinate two levels of 
units 

Partitioning into n 
parts to find 1 units. 

 

 Iterating non-1 units n 
times 

 

M
T-

2 

Students’ may 
coordinate three levels 
of units 

Partitioning into n 
parts to find non-1 units. 

 

 
Disembedding a unit 

to iterate n times. 
  

M
T-

3 

Students’ can 
coordinate with three 
levels of units even with 
rational numbers. 

Decompose partitions 
into non-1 units (may 
include coordination of 
partitions in both length 
models). 

 

 

Coordination of Mathematical Quantitative and Mathematic-Linguistic Information Units 
Recent examinations of elementary children’s use of detailing have found relationships between 

whether students engage in detailing and their success on tasks requiring multiplicative reasoning 
(Kosko, 2016; Kosko & Singh, 2016a), as well as the emergence of nominalization in mathematical 
argument and the development of relational conceptions of equivalence (Kosko & Singh, 2016b). 
Such findings follow prior research identifying relationships between students’ generalizations and 
their success with early algebra tasks (e.g., Blanton & Kaput, 2011; Morris, 2009), but examines the 
interplay between the development of mathematical argumentation and early algebra at a finer gran 
size of analysis. The present study posits an even more specified view of this interplay. Specifically, 
children’s use of detailing colligates information units to create copulative signs (Kosko, 2016; 
Kosko & Singh, 2016a; Kosko & Zimmerman, 2015). Children’s creation of copulative signs points 
to an ability to abstract multiple meanings as one. In a very similar fashion, children’s coordination 
of quantitative units in ways mathematics education researchers would consider as multiplicative also 
points to an ability to abstract multiple meanings as one. Although these two types of coordination 
point to the same ability to abstract meaning, we conjecture that they are not necessarily the same, 
but similar enough to co-occur more often than not. However, such a potential interplay is important, 
given the potential of one type of coordination to influence the development of the other (Kosko, 
2016). 
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The interplay conjectured here provides a much needed mechanism for explaining observed co-
development of early algebra and mathematical argument, with a specific focus on multiplicative 
reasoning and detailing. Because detailing involves the coordination of multiple information units 
into what Pierce (1903/1998) refers to as a copulative proposition, and multiplicative reasoning at its 
initial tiers involves the coordination of multiple non-1 quantities into a singular number, we 
conjecture that both forms of coordination involve a similar form of abstraction. Thus, they should be 
more likely to co-occur than not. Our rationale for this conjecture lay in the nature of both kinds of 
coordination. Specifically, information units are composed of multiple nominal elements such that 
each proposition must be considered, at least tacitly, as its own entity. Similarly, multiplicative 
reasoning requires that a non-1 unit be considered at least as a grouping of 1s that can be operated 
upon. Coordination of propositions (in the form of information units) via detailing requires a level of 
linguistic coordination beyond simply providing a sequence of propositions. Rather, the propositions 
must be cohesively joined, and this is an aspect of linguistic coordination that seems to become more 
prevalent beginning in the second grade (Kosko & Zimmerman, 2015). Likewise, multiplicative 
reasoning involves the coordination of number beyond counting by 1s; a form of unit coordination 
that appears to begin emerging more prevalently in second and third grade (Kosko & Singh, in 
review). Therefore, the level of coordination involved in detailing and multiplication is similar in that 
both move beyond the basic operations of their domains, but involve at least some movement to 
coordination units of units. Should our conjecture hold true, we would anticipate seeing a 
relationship between children’s multiplicative reasoning and their detailing across different types of 
tasks. Thus, we ask the following research question: How does children’s multiplicative unit 
coordination relate to the presence of detailing in their mathematical argumentative writing? 

Methods 

Sample and Measures 
Data were collected in May 2015 from 168 second and third grade students in two suburban 

school districts in a Midwestern U.S. state. Second grade students were enrolled in four different 
teachers’ classrooms (n = 76) and third grade students were enrolled in three different teachers’ 
classrooms (n = 92). Participants completed two packets across two weeks. In week one, the packet 
included a multiplicative reasoning assessment. In week two, the packet included six mathematical 
argumentative writing tasks, although we limit our discussion in the present paper to only two tasks 
for sake of space and simplicity (Tasks 3 and 4).  

The multiplicative reasoning assessment was developed by Kosko and Singh (in review) and 
includes 12 items designed to assess students’ use of different enacted unit coordination schemes. We 
used a rubric involving 11 codes to assess students’ demonstrated work (Kosko & Singh, in 
review).The students were assigned to a particular tier if they received correct scores to over half of 
the items in that tier. As an example we assigned students to MT-2 who got 3 out of 4 items (aligned 
with MT-2) correct, provided they also meet the criteria for lower tiers. Our analysis placed 67.5% 
students in MT-0, 18.4 % in MT-1, and 14.1 % in MT-2. None of the students were placed in MT-3. 
A Cronbach’s alpha coefficient of .86 was calculated for the enacted schemes in all 12 items across 
different tiers, suggesting sufficient reliability of the assessment (for further information on the 
assessment, see Kosko & Singh, in review). 

The mathematical argumentative writing tasks included six tasks with three incorporating length 
model representations of arithmetic and three incorporating the use of expressions and equations for 
arithmetic. The two tasks discussed in the present paper are presented in Table 2. Task 3 required 
students to use Cuisenaire rods (a color-coded length model) and assume that a red rod is 5 long, 
although it cannot be physically partitioned into 5 sub-units. Kosko (2016) found that use of this task 
encouraged more detailing than a similar task in which allowed for such physical partitioning. 
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Similarly, Task 4 requires students to consider three separate expressions/equations in relation to one 
another. To do so, it was assumed that detailing would be necessarily enacted to communicate the 
strategy cohesively (i.e., that each expression/equation serves as an information unit that can be 
colligated via detailing). 

Table 2: Mathematical Argumentative Writing Tasks 
Task 3* Task 4 

If a red rod is 5 long, a 
yellow rod can’t be 9 
because… 

 
*Students completed task 3, and other length model tasks, with Cuisenaire rods. 

Analysis 
The present study incorporates a data-transformation variant of convergent mixed methods 

design (Creswell & Plano Clark, 2011). Specifically, an SFL approach to examining functional 
grammar was used to qualitatively analyze second and third grade students’ use of reference and 
detailed reference chains in their mathematical argumentative writing. Findings were organized into 
classifications that were quantified into variables for Chi-Square analysis. Quantitative data was 
collected from the multiplicative reasoning assessment and merged with the quantified SFL analysis 
for the mixing of data. Un-quantified qualitative findings were then used to help interpret quantitative 
findings from the Chi-Square analysis.  

Qualitative analysis of functional grammar. We used SFL to examine the presence and 
patterns of reference use in children’s mathematical argumentative writing. Reference is part of the 
textual metafunction of grammar, with its primary role to promote cohesion and coherence to an 
audience (Halliday & Matthiessen, 2004). A child communicating mathematically may use isolated 
referents, or may use reference chains that link referents in two or more propositions. In the present 
study, Kosko’s (2016) description of detailing is used to distinguish between general reference chains 
and detailed reference chains. Detailed reference chains were coded for the operationalization of 
initial given referents in a manner that colligated two or more information units. Information units 
are clause-level grammatical units that connect given and new referents to convey information 
(Halliday & Matthiessen, 2004). Detailing, as defined in this paper, creates reference chains with 
endophoric and exophoric references that allow for two or more information units to be considered 
holistically as a colligated proposition.  

The structure of mathematical writing tasks typically provides given information and an 
indication for a claim to be established; similar to Herbst and Chazan’s (2011) described norms for 
providing a proof problem in high school Geometry. This structure allows for the construction of 
hypothetical reference chains that are more likely to be written to form a copulative proposition. For 
Task 3 (see Table 2), a complete and detailed reference chain should include a reference to the red 
rod being 5 long, operationalization of this given stating that two reds are 10 long, and an extension 
of this latter proposition to convey that 10 cannot be less than 9. Presence of variations of these three 
propositions was coded as detailing, but no other variations of detailing were observed. Both authors 
examined data for the initial information unit, incomplete detailing (i.e., two but not all three 
information units present), and complete detailing. Data were quantified, and coding was found to 
have strong interrater reliability (Κ=.67). Coding was then dichotomized to compare prevalence of 
detailing and not detailing in the quantitative analysis (M=.22, SD=.42). 
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Similar to coding of Task 3, Task 4 had one identified and coded detailed reference chain 
including two information units: a proposition conveying that Omar added 1 to each 19, and a 
proposition conveying that 2 be subtracted from the total. Incomplete detailing was observed when 
referents were not operationalized in a manner to colligate the two information units. As with the 
prior discussed task, data were quantified and coding was found to have strong interrater reliability 
(K=.90). Data were then dichotomized to compare prevalence of detailing and not detailing (M=.38, 
SD=.49). 

Quantitative analysis of multiplicative reasoning and detailing. Chi-Square statistics were 
calculated to investigate whether the presence of detailing in students’ MAW coincided with their 
multiplicative tiers. The relationship between detailing and multiplicative tier was found to be 
independent from chance both for Task 3 (V/(df = 2) = 8.121, p = 0.017) and Task 4 (V/(df=2) = 
18.971, p = 0.000). In order to better understand these findings, a post hoc analysis was used to 
examine the differences between specific observed and expected frequencies within individual cells 
of the Chi-Square contingency table. The adjusted standardized residuals for each cell in the 2x3 
table (i.e., dichotomous detailing code X three observed multiplicative tiers) were calculated, and 
represent a statistic similar to a z-score for the difference between observed and expected counts in 
each cell (Haberman, 1973). Critical values for adjusted standardized residuals were ±2.0. 
Statistically significant and positive residuals were observed for the presence of detailing for students 
at MT-2 for Task 3 (2.5) and Task 4 (3.1), as well as for students at MT-1 for Task 4 (2.4). Students 
at MT-0 were observed to engage in detailing less than expected by chance for both Task 3 (-2.6) and 
Task 4 (-4.3). Therefore, the multiplicative tier a student was placed was found to coincide with the 
presence or absence of detailing, with the observed frequencies are outside those expected by chance. 
However, differences in magnitude of adjusted standardized residuals suggest that the relationship 
may vary by task. 

Discussion and Conclusion 
Findings from this paper suggest that elementary children’s enactment of detailing in their 

mathematical argumentative writing on two tasks is not independent from their demonstrated ability 
to coordinate units multiplicatively. However, it is important to note that both analyzed tasks 
solicited detailing that directly linked endophoric with exophoric references between propositions. It 
is likely that some tasks may solicit less (or more) sophisticated reference chains. For example, some 
mathematical writing tasks may solicit reference chains that link only endophoric references together, 
which is less linguistically complex than detailing solicited from the tasks in this paper. It is also 
feasible that a task may solicit the linking of exophoric references between two information units, 
providing a more linguistically complex example of detailing than presented in this study. Such 
variations of detailing and reference use in mathematical argument are in need of further study. 
Although the present study did not explore such variations, there are specific and significant 
implications of these findings.  

Earlier in this paper, we conjectured that linguistic coordination of information units via detailing 
and unit coordination via demonstrated multiplicative reasoning were similar enough in their 
observable structure to co-occur among elementary children. The findings of the present study 
provide additional evidence for this conjecture, as does recent work in this area (Kosko, 2016; Kosko 
& Singh, 2016b). Although these two types of coordination point to the same ability to abstract 
meaning, we conjecture that they are not necessarily the same. From a theoretical perspective, this 
suggests we should not expect a students’ demonstrated ability with one coordination type to 
automatically coincide with the other. Yet from a practical perspective, findings here suggest that the 
similarity of each coordination type may allow for improved instruction of each via incorporation of 
the other. 
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